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The transfer entropy was recently proposed as a means of exploring coupling in dynamical systems. Transfer
entropy is an information theoretic that quantifies the degree to which one dynamical process affects the
transition probabilities �dynamics� of another. Here we demonstrate how this metric may be utilized to detect
the presence of nonlinearity in a system. Using the method of surrogate data, the transfer entropy computed at
various lag times are compared to values computed from linearized surrogates. The transfer entropy is shown
to be a more sensitive indicator of nonlinearity than is the mutual information for both simulated and experi-
mental data. This technique is particularly applicable to the field of structural health monitoring, where damage
is often equated with the presence of a nonlinearity in an otherwise linear system.
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I. INTRODUCTION

In problems of system identification the practitioner is
often interested in discerning whether or not the dynamics of
an observed system may be appropriately modeled as linear.
For example, in the analysis of structural vibration many
techniques are based on the assumed linearity of the under-
lying dynamics, e.g., the eigensystem realization algorithm,
complex exponential algorithm, Pisarenko’s harmonic de-
composition, etc. �see Fahey �1� for a summary�. The validity
of a linear approximation is also of interest in the field of
structural health monitoring �SHM�, where structural damage
often manifests itself as the introduction of a nonlinearity
into an otherwise linear system. Examples include post-
buckled structures �Duffing nonlinearity�, rattling joints �im-
pacting system with discontinuities�, or breathing cracks �bi-
linear stiffness model�. Methods that can reliably quantify
the degree of nonlinearity in system dynamics are therefore
well suited to the damage detection problem.

The question is more appropriately stated, “Are the ob-
served dynamics consistent with the hypothesis of a linear
stochastic process”? A number of researchers have ap-
proached this question using the notion of “linearized” sur-
rogate data sets. The surrogate data are designed such that
they retain the linear correlations among the original data yet
are random with respect to higher order �nonlinear� correla-
tions. Using an appropriate algorithm, data and surrogates
are processed, and differences in the results are attributed to
nonlinearity. To this end, the mutual information �or its
higher dimensional analog, redundancy� is often used as the
algorithm of choice. Redundancies represent a probabilistic
description of coupling among system components and
therefore may be used to capture both linear and nonlinear

relationships. This redundancy-based approach to detecting
nonlinearity has been used in a number of studies �see, for
example, Paluš �2,3��. The drawback to exploring dynamical
relationships with redundancies is that they define coupling
in terms of statistical dependencies when what we are often
concerned with are dynamical dependencies. This important
distinction was noted by Schreiber �4� who suggested a new
measure, the transfer entropy, that defines coupling as the
degree of influence one system has on another’s transition
probabilities �dynamics�. Later, in Kaiser and Schreiber �5�,
the transfer entropy was demonstrated to more appropriately
quantify the dynamical relationship among time series data
than was the mutual information. In particular, the transfer
entropy was able to capture asymmetries in the way informa-
tion was shared between two different dynamical processes.

Because the transfer entropy better captures dynamical
dependencies, it seems reasonable to suppose that the this
metric might be better suited to detecting the presence of
nonlinearity in system dynamics than the mutual informa-
tion. In this work we evaluate the transfer entropy over a
range of time scales for both simulated and experimental
data where nonlinearity �due to structural damage� is present.
We then compare the values of the transfer entropy obtained
from these data to those obtained from linear surrogate data.
Differences in the results are attributed to the presence of
nonlinearity and are quantified using an appropriate index.
Both simulated and experimental results suggest that the
transfer entropy is more sensitive to nonlinearity in the data
than is the time-delayed mutual information function. One
may thus hypothesize that transfer entropy is a very useful
tool that has a novel application in SHM, where detecting
damage is of prime importance.

II. QUANTIFYING DYNAMICAL DEPENDENCE

Let xi�n� be a time series of the ith system response vari-
able recorded at discrete time n. Furthermore, let p�xi�, p�xj�,*Email address: pele@ccs.nrl.navy.mil
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and p�xi ,xj� be the single and joint probability densities
associated with variables xi�n� and xj�n�. Mutual
information measures statistical independence as I�xi ;xj�
=��p�xi ,xj�log2�p�xi ,xj� / p�xi�p�xj��dxidxj. For statistically
independent distributions the joint density factors �i.e.,
p�xi ,xj�= p�xi�p�xj�� and the mutual information will be zero.
Should there exist statistical dependencies, I�xi ;xj� will be a
positive value. Adding a time delay to one of the variables
allows for temporal correlations to be accounted for �6�. Let-
ting p(xi ,xj�T�) be the joint density associated with the vec-
tors xi�n� and xj�n+T�, the time-delayed mutual information
is given by

I�xi;xj,T� =� � p„xi,xj�T�…log2
p„xi,xj�T�…

p�xi�p„xj�T�…
dxidxj�T� .

�1�

Note we have assumed p(xj�T�)� p�xj�, i.e., time-shifting
does not alter the individual densities, only the joint density.
Because this measure defines coupling in terms of the entire
probability density function �as opposed to just covariance
properties�, it is capable of capturing higher order correla-
tions.

A test for nonlinearity may therefore be designed using
the notion of linear surrogate data sets. Given the time series
measurements xi�n� and xj�n�, one may construct surrogates
that preserve only the covariance properties of the original
data. This may be accomplished using the procedure outlined
by Prichard and Theiler �7�, described briefly here. Denoting
the complex Fourier transform �FT� of a time series as
Xi�f�=F(xi�n�), the cross-spectral density between two time
series is given by Sxixj

= �Xi�f���Xj�f��ei��i�f�−�j�f��. By the
Weiner-Khinchine theorem, the inverse FT of the cross-
spectral density is the linear cross-correlation function, i.e.,
Rxixj

=F−1�Sxixj
�. Adding the same random phase ��f� to both

�i�f� and � j�f� will therefore preserve Sxixj
and thus Rxixj

.
This method does not preserve the original data amplitude
distribution; however, in our particular case we are testing
against the null hypothesis that the data are linearly corre-
lated Gaussian noise. This stems from the fact that our un-
damaged structure is a nominally linear system excited by
Gaussian noise, and thus the response is expected to be
Gaussian. One may therefore construct surrogate time series
x̂i�n�=F−1(Xi�f�ei��f�) and x̂j�n�=F−1(Xj�f�ei��f�) that exactly
match the second-order correlations in the data, but due to
the randomization procedure, any higher order correlations
have been destroyed. Comparing I�xi ;xj ,T� and I�x̂i , x̂j ,T�
will therefore produce discrepancies if the relationship be-
tween xi�n� and xj�n� is nonlinear �possesses higher-order
correlation�.

Transfer entropy can be used in exactly the same fashion.
Transfer entropy asks the question, “do the dynamics of one
process, say xi�n�, influence the transition probabilities of
another process xj�n�”? Both processes are assumed to
be described by a generalized Markov model of order ki
and kj, respectively. In other words, the dynamics of xi�n�
obey p(xi�n+1� �xi�n� ,xi�n−1� , . . . ,xi�n−ki+1�)= p(xi�n
+1� �xi�n� ,xi�n−1� , . . . ,xi�n−ki�). The formulation for trans-

fer entropy given in Ref. �5� allows for the practitioner to
choose the order of the governing Markov processes for both
xi�n� and xj�n�. Here we focus on first order processes only
such that ki=kj =1. The goal in this work is not to build an
accurate predictive model of the dynamics, but to simply
discern whether or not the dynamics are linear. For this pur-
pose the first order assumption appears to suffice; however,
more accurate models may produce better discrimination.
For simplicity we will denote p(xi�n+1� �xi�n�)	 p(xi�1� �xi)
�dropping the redundant time index “n” for notational con-
venience�. If the dynamics xj�n� are influencing those asso-
ciated with xi�n�, we have p(xi�1� �xi�n� ,xj�n�)
�p(xi�1� �xi�n�). The degree of influence may therefore be
mapped onto a scalar via the transfer entropy

TE�xi�1��xi,xj�

=� � � p„xi�1�,xi,xj…log2
p„xi�1��xi,xj…

p„xi�1��xi…
dxi�1�dxidxj .

�2�

Similar to the mutual information, a null hypothesis is placed
in the denominator of the logarithm �assumption of indepen-
dence� while the alternative hypothesis resides in the nu-
merator. Because Eq. �2� is naturally nonsymmetric in its
arguments, there is no need to introduce a time delay to
assess directionality of information flow. However, we find
that it is still useful to introduce such a delay allowing one to
quantify the information carried in xj�n+T� about the transi-
tion probabilities p(xi�1� �xi). We are therefore still consider-
ing a first order Markov model of the dynamics, but are
considering the influence of the second time series across a
variety of time scales. It is reasonable to assume, for ex-
ample, that the value xj�n−20�, for example, carries added
information about the transition from xi�n�→xi�n+1�. This
information is more formally obtained by simply increasing
the order of the assumed Markov model, e.g., kj =20; how-
ever, there is a computational cost associated with the esti-
mation of the transfer entropy in higher-dimensional space
�see Sec. II A�. The introduction of a delay, while not neces-
sary to detect asymmetries in the dynamical relationships, is
still an appropriate tool for exploring temporal dependencies.
It will be shown that not only do these temporal dependen-
cies exist, but they provide valuable information about the
dynamics of the underlying processes. We note briefly that
values associated with positive delays should not be thought
of as influencing past behavior �an impossibility� but rather
containing information about past behavior. Only in the case
of unidirectional coupling is it necessary to consider only
negative �or positive, depending on which signal is the
driver� delays. For processes with bidirectional coupling �or
where it is not known a priori if biased coupling occurs�, it
makes sense to examine the transfer entropy in both forward
and reverse time.

Letting p(xi ,xj�T�)	 p(xi�n� ,xj�n+T�) �again dropping
time index n for convenience� and expanding Eq. �2� as the
sum and difference of various entropies gives
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TExj→xi
	 TE„xi�1��xi,xj�T�…

=� � � p„xi�1�,xi,xj�T�…

�log2 p„xi�1�,xi,xj�T�…dxi�1�dxidxj�T�

+� p�xi�log2 p�xi�dxi

−� � p„xi,xj�T�…log2 p„xi,xj�T�…dxidxj�T�

−� � p„xi�1�,xi…log2 p„xi�1�,xi…dxi�1�dxi.

�3�

Equation �3� will be referred to as the time-delayed transfer
entropy and will be shown to be a useful metric in diagnos-
ing the presence of nonlinearity in the coupling between
xi�n� and xj�n�.

A. Estimation from time series

Estimates of the transfer entropy �and redundancies� re-
quire approximations of the various entropies that comprise
them. It has been shown �8,9� that if a kernel density estima-
tion is performed about each point in the time series, the
entropies may be approximated by

� p„x�n�…log2�p„x�n�…�dx �
1

N



n

log2�p̂„x�n�,�…� , �4�

where

p̂„x�n�,�… =
1

N�


m

K� �x�n� − x�m��
�

� , �5�

and K�·� is the kernel. Here we utilize the familiar “step”
kernel �9�, such that Eq. �5� becomes

p̂„x�n�,�… =
1

N − 2t − 1 

m:�m−n��t

�„� − x�n� − x�m�… ,

where ��·� is the Heaviside function and the parameter t is
introduced as the Theiler window �chosen to exclude tempo-
rally correlated points within t time steps of n from consid-
eration in the estimate�. This estimation technique is referred
to as a fixed bandwidth approach. We also consider a fixed-
mass approach, whereby the number of points used to define
the local density remains constant while the bandwidth is
allowed to vary. This approach has the advantage of being
adaptive; that is, areas of high density occupy smaller vol-

umes and vice versa. For the adaptive kernel, Eq. �5� may be
rewritten

p̂„x�n�,M… =
1

N − 2t − 1

M

V„x�n�…
,

where M is a fixed number of nearest neighbors to the fidu-
cial point x�n�, and V(x�n�) is the volume containing these
points. This volume may be computed a number of ways;
here we use both hyperspheres and hyperrectangles. For the
hypersphere volume element, the radius is taken as the Eu-
clidean distance from x�n� to the furthest of the M near
neighbors. For the rectangular elements, the volume element
is given by V(x�n�)=� j� j, where the � j are the sides of the
smallest enclosing rectangle associated with the M points.
The constituent entropies for both mutual information and
transfer entropy are again computed via Eq. �4�. It should be
noted that the fixed mass approach is much more computa-
tionally intensive than the fixed bandwidth approach. Find-
ing the M nearest neighbors in a data space is inherently
more difficult than finding all neighbors within a given ra-
dius. Choice of kernel can be heavily dependent on the na-
ture of the quantity being estimated. The transfer entropy is
much more sensitive to choice of kernel than is the mutual
information function as will be shown.

B. Information-theoretics for linear structures

In certain instances both time-delayed mutual information
and time-delayed transfer entropy admit analytical solutions.
The dynamics of a linear, dissipative, Gaussian-excited struc-
ture obey

M�ẍ� + C�ẋ� + K�x� = f�t� , �6�

where M ,C ,K represent, respectively, the L�L constant-
coefficient mass, damping, and stiffness matrices of the L
degree-of-freedom structure. Let ui be the nontrivial eigen-
vector�s� of the associated Hamiltonian eigenvalue problem
�K−�2M�ui=0. Furthermore let these eigenvectors �known
as mode shapes� be “mass normalized” such that ui

TM ·ui
= I �the identity matrix�. If the Gaussian excitation is applied
to the end mass the forcing vector is written
f�t�= �0,0 , . . . ,N�0,1��T. Because the structure is linear, the
response of any of the L degrees of freedom will also be
Gaussian, and the linear cross-correlation between any two
state variables xi and xj is given by

Rxixj
��� =

1

4

l

L



m

L

uLluLmuilujm�Alme−	m�m� cos��dm��

+ Blme−	m�m� sin��dm��� , �7�

where

Alm =
8��l	l + �m	m�

�l
4 + �m

4 + 4�l
3�m	l	m + 4�m

3 �l	l	m + 2�m
2 �l

2�− 1 + 2	l
2 + 2	m

2 �
,
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Blm =
4��l

2 + 2�l�m	l	m + �m
2 �− 1 + 2	m

2 ��
�dm��l

4 + �m
4 + 4�l

3�m	l	m + 4�m
3 �l	l	m + 2�m

2 �l
2�− 1 + 2	l

2 + 2	m
2 ��

. �8�

This derivation assumes that the damping matrix C is diag-
onalizable, achieved through a modal damping model with
dimensionless damping ratios 	i defining the fraction of criti-
cal �required for oscillatory behavior� damping in the ith
mode. The damped natural frequencies are therefore given
by �di=�1−	i

2�i. The linear cross-correlation coefficient is
obtained from Eq. �7� through the normalization


xixj
�T� = Rxixj

�T�/�Rxixi
�0�Rxjxj

�0� . �9�

For linear structures, a closed form expression for both time-
delayed mutual information and time-delayed transfer en-
tropy may be obtained by carrying out the integration re-
quired in Eqs. �1� and �3�, respectively, resulting in

I�xi;xj,T� = − 1
2 log2�1 − 
xixj

2 �T�� ,

TE„xi�1��xi,xj�T�… =
1

2
log2

�1 − 
xixj

2 �T���R̂xixi

2 �1� − 1�

− 2
xixj
�T − 1�R̂xixi

�1�
xixj
�T� + 
xixj

2 �T − 1� + �R̂xixi

2 �1� + �− 1 + 
xixj

2 �T���
, �10�

where we have denoted R̂xixi
�T�=Rxixi

�T� /Rxixi
�0� as the nor-

malized autocorrelation. As expected, the linearized mutual
information function is a function of only the linear cross-
correlation between xi�n� and xj�n�. For time-delayed trans-
fer entropy the formula is slightly more complicated and
includes both autocorrelations and cross-correlations as well
as time-shifted versions of both quantities. The appearance
of autocorrelation terms stems from the transition probabili-
ties p(xi�1� �xi), while the time-shifted cross-correlation terms
result from the covariance between xi�n+1� and xj. Both nu-
merator and denominator of the linearized transfer entropy
are very small in magnitude �O�10−3� for this numerical ex-
ample�, as they contain terms that scale with the derivatives
of the linear autocorrelation and cross-correlation functions,
i.e., 
xixj

2 −1 and R̂xixj

2 −1. The result is a metric that is inher-
ently more sensitive to changes in the dynamics of structural
systems than is the mutual information function. Equation
�10�, combined with Eqs. �7�–�9�, provides an analytical so-
lution for assessing the various kernel density estimation
schemes.

Both fixed bandwidth and fixed mass approaches were
considered in this work. Using the simulated displacements,
consisting of N=216 points, for masses 2 and 3 both the
transfer entropy and mutual information were computed and
compared to their theoretical values. For the time-delayed
mutual information all approaches to estimation gave good
quantitative agreement �see Fig. 1, left�. This particular met-
ric is largely insensitive to the type of density estimation and
the parameter values used � ,M. Here we show results for
�=0.05, M =10. Furthermore, only I�x3 ;x2 ,T� is shown as
I�x2 ;x3 ,T� is nearly identical, the only difference being a
slight translation moving the center peak from T�0 to

T�0. The transfer entropy metric proved more challenging
to estimate. Using the fixed bandwidth approach yields val-
ues for T3→2 that shows qualitative agreement only to the
theoretical curve. A number of different � values were used,
each one showing significant deviations from theory �the
value used in the figure, �=0.05 gave the best estimate�. The
fixed-mass approaches performed significantly better show-
ing good quantitative agreement to theory. Estimates using
both hyperrectangles and hyperspheres were performed and
the results displayed in the right two plots of Fig. 1. For the
transfer entropy both T3→2 and T2→3 are shown as there ex-
ists a significant difference in the results. By design, the
transfer entropy metric is able to capture asymmetries in the
flow of information. The differences in the curves therefore
pertain directly to which end of the structure is being forced.
This information is difficult to extract from the mutual infor-
mation function. We now demonstrate how the time-delayed
transfer entropy, in conjunction with surrogate data, can be
used to outperform mutual information in detecting the pres-
ence of a structural nonlinearity

III. SIMULATED STRUCTURE WITH QUADRATIC
STIFFNESS NONLINEARITY

As a first step we considered the model Eq. �6� with
“fixed-free” boundary conditions and included a quadratic
nonlinearity in the stiffness matrix, i.e., K=K�x�. Specifi-
cally, we allow the force of coupling between masses 2 and 3
to include both linear and nonlinear components. The restor-
ing force �itself cubic in nature due to the quadratic nonlin-
earity� generated by the system stiffness may be written
more compactly in terms of relative mass displacements as
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Equation �6� was simulated using M= I �i.e., all mass values
are unity� and ki=10.0 N/m, i=1, . . . ,5. The damping ma-
trix C follows the same form as the linear portion of the
stiffness matrix with entries ci=0.01 N s/m, i=1, . . . ,5.
Gaussian noise of unit standard deviation was used to excite
the structure at the end mass �mass 5�. Response data were
recorded for each of the five mass displacements for
n=1, . . . ,216 points for �=0 �no nonlinearity�, and both
time-delayed mutual information and time-delayed transfer
entropy were computed. Using the FT-based approach, ten
linear surrogate data sets were created and both the mutual
information and transfer entropy computed for each. In the
initial cases we used forty surrogates �a number chosen simi-
larly to previous studies �7,10�� and found no significant
changes in results. Therefore ten surrogates were always
used for subsequent analyses. This process was repeated for
� increasing from zero up to the bifurcation point where
cross-well behavior is observed �resonant jump�. At this
point, of course, it becomes trivial to detect the nonlinearity.
Results comparing data and surrogates are shown in Fig. 2
using the fixed bandwidth approach These results also high-
light the need for examining the transfer entropy over a va-
riety of lags. For zero lag, little difference is observed be-
tween the data and the surrogates, while for T= ±2 a large
separation between surrogates and original data is evident.
That higher-order correlations are more clearly observed at
delays other than T=0 is not surprising. For this system, the
masses are directly coupled such that for zero lag there is a
great deal of redundant information. Regardless of the degree
of nonlinearity, the transfer entropy for T=0 is always near
zero. Positive and/or negative lags are needed to provide
additional information about the nature of the underlying
model �linear/nonlinear�. It is apparent that the transfer en-
tropy provides a greater discernment between data and sur-
rogates over a wider range of time scales thus making it
easier to resolve the presence of the nonlinearity.

We also computed results using the fixed mass approach
with a variety of mass sizes. The results for M =20 are shown
in Fig. 3. Again, the transfer entropy shows an increased
difference between original and surrogate data however the
degree of separation is similar to that achieved using the
fixed bandwidth approach. From this preliminary work we
therefore conclude that there is no compelling reason to uti-
lize the more time-consuming fixed-mass kernel density es-
timation approach if the goal is to simply detect the presence
of a nonlinearity. Although the fixed mass approach yields a
more accurate result, it is not clear that the relative separa-
tion between data and surrogates is improved. For this reason
we utilize the more efficient fixed-epsilon estimator in the
following experimental examples.

IV. EXPERIMENT 1: LOOSENING OF A BOLTED
CONNECTION

In the first experiment, the frame structure shown in Fig. 4
was constructed. The structure was a one-bay stainless-steel
frame consisting of two vertical members �12 in�2 in
�0.25 in� and a horizontal member �22 in�2 in�0.25 in�
bolted together with 3.5 in�3.5 in�0.25 in steel angle
brackets. The vertical members were bolted via angle brack-
ets to a 26.75 in�8 in�0.5 in steel plate which was in turn
clamped to a laboratory table in order to simulate a fixed
boundary condition.

FIG. 1. Comparison of various estimation methods for Mutual
Information �I�x3 ;x2 ,T�� �top� and transfer entropy �Tx3→x2

,Tx2→x3
�

�middle and bottom�.
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Gaussian noise signals with center frequency near 500 Hz
were generated in LabVIEW. The structure was excited with
this waveform by a MB Dynamics PM50A shaker clamped
to the same table and attached via a stinger to one of the
vertical spars. PCB A352C65 ICP accelerometers
�100 mV/g� were attached with wax to measure the response
at three locations on the structure. These accelerometers
were located near one of the brackets connecting the hori-
zontal member to one of the vertical members. One acceler-
ometer was placed below the bolt on the excitation �out-

board� side of the vertical spar �channel 1�, the second was
placed above the bolt on the horizontal spar �channel 2�,
while the other was placed above the bolt on the vertical
member opposite the excitation �channel 3�.

The shaker was powered by a MB Dynamics SL500 VCF
power amplifier which in turn was controlled by a National
Instruments PCI 6036E D/A card. Excitation control and data
acquisition were managed through a National Instruments
�NI� LabVIEW 7.0 interface and a NI SCXI-1000 chassis.
For each excitation case, a six-second signal was generated

FIG. 2. Transfer entropy and mutual information for surrogates �� and original data ��� using the fixed bandwidth approach to
estimation ��=0.1�.
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in LabVIEW and sent to the amplifier upon which the accel-
erometer responses were managed in multiplex by a SCXI-
1531 module and read into LabVIEW. The shaker update
rate and all data acquisition were performed at 20 kS/s.

Damage was simulated at one of the joints by altering the
initial torque of the bolt at that joint. The acceleration re-
sponse of the structure to the Gaussian input was measured at
each damage case. Damage case 0 corresponds to full bolt
torque �120 in-lb�, damage case 1 to 60 in-lb, damage case
2 to 30 in-lb, damage case 3 to a “finger tight” condition,

FIG. 3. Transfer entropy and mutual information for surrogates �� and original data ��� using the fixed mass approach to estimation
��=0.1�.

FIG. 4. �Color online� Frame structure with accelerometers lo-
cated at one joint.
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damage case 4 to a “fully loose” condition, and damage case
5 to a completely removed bolt.

Ten linearly related surrogate data sets were generated for
this sensor pair. Both the time-delayed mutual information
and time-delayed transfer entropy were then computed for
both the original data and the surrogates using the fixed-
epsilon approach with �=0.1. Results of this computation are
shown in Figs. 5 and 6 for each of the six damage cases
�including the baseline condition, case 0�. While the joint is
in the fully tightened condition no difference is observed
between the metric values for the data and the surrogates.
Under this condition the structure’s dynamics are consistent

with the hypothesis of a linear model. The structure appears
to adhere to a linear model until damage case 3 for the mu-
tual information and damage case 2 with the transfer entropy,
where in each case separation is observed between the data
and the surrogates. The final two damage cases for both met-
rics show gross differences suggesting a high degree of non-
linearity is present. This is expected as a loose joint will
exhibit both impact discontinuities and “stick-slip” phenom-
enon in the dynamics. The differences between data and sur-
rogates may be made explicit by constructing a damage in-
dex. At each delay we use the surrogate mean �S and
standard deviation �S to form the metric

FIG. 5. Mutual information for surrogates �� and original data ���.
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��T� =
�I�T� or TE�T�� − �S

�S

using either the mutual information �I� or transfer entropy
�TE� computed features. By applying a suitable threshold for
significance we may test the hypothesis of linearity at each
delay T. Alternatively, we can compare the average normal-

ized metric value �̄�T�= �1/2T�
−T
T ��T� to the threshold. In

this work we take the latter approach and form the average
normalized metric value and compare to the threshold
S=1.96 for 95% confidence �assuming the surrogates are

normally distributed�. The final damage index is given by the
degree to which the threshold is exceeded by taking

Z = ��̄ − S����̄ − S� ,

where ZI,TE=0 for �̄�S �threshold is not exceeded�. Results
are shown in Fig. 7 for both mutual information and transfer
entropy. The two metrics clearly show different levels of
sensitivity to the damage. Mutual information classifies the
dynamics of case 3 as linear whereas the transfer entropy
clearly indicates the presence of a nonlinear relationship. The
degree to which the average transfer entropy �over all delays�

FIG. 6. Transfer entropy for surrogates �� and original data ���.
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exceeds the confidence limits is much greater than for the
mutual information. Thus, the transfer entropy possesses
greater sensitivity to structural damage for this particular ex-
periment.

V. EXPERIMENT 2: IMPACT DAMAGE IN COMPOSITE
PLATES

In this second example the structure of interest is a thick
composite sandwich plate subject to varying levels of impact
damage. Three plates were tested, one with no damage,
one that was impacted with 672 ft-lb of force at its center,
and a third that was impacted with 1344 ft-lb of force, also
at the plate center. A picture of the third plate is shown in
Fig. 8 with damage located at the center. A series of fiber
Bragg-grating strain sensors were mounted on the surface of
the plate and were used to record the plate’s strain response.
A complete description of this sensing system may be found
in Ref. �11�. The plate was excited with broadband
�0–200 Hz� Gaussian noise and response data were sampled
at a rate of 800 Hz. Both mutual information and transfer
entropy were then computed for ten linear surrogates and
the original time series. Each sensor pair was analyzed, i.e.,
we compute I�xi ;xj ,T� and TEj→i for i , j=1, . . . ,10 using
the fixed bandwidth approach with �=0.1. Damage indices
were then extracted in the same fashion as for the bolted

joint study and plotted for each sensor pair in Fig. 9. In these
plots, darker shading indicates higher levels of nonlinearity,
while white is used for zero nonlinearity, as quantified using
the aforementioned deamage indices. The top row of plots
shows the indices obtained using the mutual information
function while the bottom row shows results based on the
transfer entropy. The transfer entropy is clearly detecting
nonlinearity where the mutual information fails to do so.
The majority of sensor pairs for plate No. 2 suggest a
nonlinear relationship when analyzed with the transfer en-
tropy whereas only a few sensor pair indicate nonlinearity
using the time delayed mutual information. Even for the
most damaged plate the transfer entropy is clearly able to
resolve the presence of the impact. The mutual information
function can resolve the presence of the impact on plate No.
3 only.

The indication for both this and the previous experiment
is that the transfer entropy is better suited to detecting the
presence of nonlinearity in structural dynamics. This height-
ened sensitivity is likely due to the fact that the transfer
entropy is a more appropriate definition of dynamical cou-
pling than is the mutual information. Rather than analyzing
statistical dependencies as a function of delay, the transfer
entropy focuses on transition probabilities, thus dynamical
dependencies, directly. We thus believe that the inclusion of
dynamics in the definition of coupling �such as with transfer
entropy� increases sensitivity to the form of the dynamics
�linear or nonlinear�.

VI. CONCLUSIONS

We explored the time-delayed transfer entropy as an ef-
fective metric for assessing the degree of nonlinearity present
in a system’s dynamics, and we compared to the use of time-
delayed mutual information for the same purpose. For linear

FIG. 7. Damage indices for both mutual information and trans-
fer entropy.

FIG. 8. Damaged composite plate showing sensor locations
�left� and experimental setup �right�.
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structural systems, we presented a general analytical solution
and compared estimates of the transfer entropy using several
different kernel density approaches. We found that a fixed
mass approach produces the most accurate estimate, al-
though computation time is significantly increased. We then
used this metric in combination with linear surrogate data to
deduce the degree of nonlinearity in both simulated and ex-
perimental structures subject to increasing nonlinearity from
damage. Based on the simulation results, we concluded that,
at least for this application, the fixed bandwidth estimator
performs as well as the fixed mass estimator. Furthermore,

both simulation and experiment suggest that the transfer en-
tropy appears to be more sensitive to nonlinear coupling
among a structure’s components than is the mutual informa-
tion �which is more commonly used�. This sensitivity is at-
tributed to the effect the transfer entropy is designed to cap-
ture, namely, the influence of one signal’s dynamics on the
transition probabilities of the other. We conclude that transfer
entropy is a useful tool applied to nonlinearity detection
problems in structural health monitoring, where the goal is to
detect damage in the structure from an observed vibration
measurement.
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FIG. 9. Damage indices recorded for plates 1, 2, and 3 �left to right� using mutual information �top row� and transfer entropy �bottom
row� for all sensor pairs.

DETECTING NONLINEARITY IN STRUCTURAL… PHYSICAL REVIEW E 72, 046217 �2005�

046217-11


